Choques inelásticos

Choques inelásticos

Algunos choques inelásticos

sábado, 25 de julio de 2009

EJERCICIOS RESUELTOS DE CHOQUES INELASTICOS

Tenemos tres vagones con los siguientes datos:

20 m / s
2.000 Kg
0 m / s
500 Kg
10 m / s
1.000 Kg









Luego de que se ensanchen los tres vagones, ¿Cuál es la velocidad final de los tres unidos

TEORIA DE CHOQUES INELASTICOS

Choques
Los choques son interacciones de dos o más cuerpos en el que existe contacto entre ellos durante un tiempo tanto determinado como indeterminado. Existen distintos tipos de choque, los choques elásticos, inelásticos y totalmente inelásticos. Todos estos choque tiene la característica de conservar su momentum o cantidad de movimiento, pero no así su energía mecánica, que en la mayoría de los casos solo se considera la energía cinética. Los choques que son elásticos mantienen el momentum inicial del sistema igual al final al igual que la energía cinética total del sistema. Dentro de este tipo de choque es importante mencionar un caso importante, que es el choque de dos cuerpos de igual masa y uno de ellos inicialmente en reposo. En el caso de que ambos cuerpos tengan la misma masa y uno de ellos es encuentra en reposo, al impactar se transferirá la energía desde el cuerpo en movimiento hacia el que esta quieto, quedando el cuerpo inicialmente en movimiento en reposo, mientras que el otro seguirá en movimiento, el mismo que seguía el primer cuerpo, un ejemplo de este es el juego de pool o billar. Mientras dura el choque cabe señalar que en el contacto de ambos cuerpos la energía se almacena en una deformación mínima y no permanente.

Choque inelástico
En un choque inelástico los cuerpos presentan deformaciones luego de su separación; esto es una consecuencia del trabajo realizado. En el caso ideal de un choque perfectamente inelástico, los objetos en colisión permanecen pegados entre sí. El marco de referencia del centro de masas permite presentar una definición más precisa. En los choques inelásticos la energía cinética no se conserva, ya que está es "usada" para deformar el cuerpo.

Conservación de la cantidad de movimiento
Si con un cuerpo de masa m1 y velocidad v1 se aplica una fuerza a otro cuerpo de masa m2 y velocidad v2, como por ejemplo, en un saque de tenis, en ese instante es aplicable el principio de acción y reacción y tenemos que:
m1.v1 = m2.v2
Es decir la masa de la raqueta por su velocidad, en el momento del choque, debe ser igual a la masa de la pelota de tenis por la velocidad que adquiere.
Enunciando la Ley de conservación de la cantidad de movimiento dice:
En cualquier sistema o grupo de cuerpos que interactúen, la cantidad de movimiento total, antes de las acciones, es igual a la cantidad de movimiento total luego de las acciones.
Σm.v = 0
mi.vi = mf.vf
ΔP = Δp1 + Δp2
Choque
Se produce choque entre dos cuerpos cuando uno de ellos encuentra en su trayectoria a otro y produciéndose contacto físico.
Al producirse el choque también se producen deformaciones en ambos cuerpos, éstas pueden desaparecer de inmediato o perdurar. Si las deformaciones desaparecen rápidamente significa que se ha producido un choque elástico, por el contrario, si permanecen se ha producido un choque inelástico o plástico.
En ambos casos ocurre una variación de la energía cinética que se transformará en calor que disiparán los cuerpos.



1 - Choque plástico o inelástico
a) Velocidades de igual dirección y sentido.
Supongamos un cuerpo 1 de masa m1 y velocidad v1 que se dirige a hacia el cuerpo 2 de masa m2 y velocidad v2, siendo ambas velocidades de igual dirección y sentido. Sobre cada cuerpo actuó en el momento del choque, el impulso que le provocó el otro cuerpo, entonces hay dos acciones de igual intensidad y sentido contrario, en consecuencia ambas cantidades de movimiento serán iguales y de sentido contrario. Luego del choque ambos cuerpos continúan juntos con una velocidad final común a ambos.
La velocidad final será:
m1.v1i + m2.v2i = m1.v1f + m2.v2f
Como v1f y v2f son iguales porque ambos cuerpos siguen juntos:
v1f = v2f = vf
m1.v1i + m2.v2i = (m1 + m2).vf
vf = (m1.v1i + m2.v2i)/(m1 + m2)
b) Velocidades de igual dirección y sentido contrario.
En este caso los cuerpos poseían velocidades de igual dirección pero de sentido contrario antes del choque, como en el caso anterior luego del impacto continúan juntos, con una velocidad final que estará dada por la diferencia de las cantidades de movimiento. La velocidad final será:
m1.v1i - m2.v2i = m1.v1f + m2.v2f Igualmente:
v1f = v2f = vf
m1.v1i - m2.v2i = (m1 + m2).vf
vf = (m1.v1i - m2.v2i)/(m1 + m2)
La velocidad final mantendrá la misma dirección pero tendrá el sentido de la velocidad del cuerpo que antes del choque tenga más cantidad de movimiento.